ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J. E. Kelly, M. S. Kazimi
Nuclear Science and Engineering | Volume 81 | Number 3 | July 1982 | Pages 305-318
Technical Paper | doi.org/10.13182/NSE82-A20276
Articles are hosted by Taylor and Francis Online.
A simplified approach is described for selection of the constitutive relations for the interphase exchange terms in the two-fluid code, THERMIT, The approach used distinguishes between pre- and post-critical heat flux conditions. Interfacial mass, energy, and momentum exchange terms are selected and tested against one-dimensional measurements for a wide range of mass flow rate, pressure, and void fraction conditions. It is concluded that the simplified regime-map approach leads to accurate predictions for light water reactor applications, excluding depressurization events.