ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
C. J. Jackson, D. G. Cacuci, H. B. Finnemann
Nuclear Science and Engineering | Volume 131 | Number 2 | February 1999 | Pages 143-163
Technical Paper | doi.org/10.13182/NSE99-A2025
Articles are hosted by Taylor and Francis Online.
A dimensionally adaptive, automatic switching algorithm has been developed for the RELAP5/PANBOX coupled thermal-hydraulics and neutron kinetics system to switch between three-dimensional (3-D), one-dimensional (1-D), and point neutron kinetics models during a transient calculation. The 3-D, 1-D, and point neutron kinetics models are developed and analyzed. The basis of this development is the consistent and stable nodal expansion method. The 1-D and point neutron kinetics models are derived in a unified manner from the 3-D model using the adiabatic approximation. The operator formulation of perturbation/sensitivity theory is consistently used to determine the reactivity for the point-kinetics model. Furthermore, the new features of the coupled RELAP5/PANBOX code are described. This provides the basis underlying the dimensionally adaptive algorithm.