ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
M. Segev
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 424-437
Technical Paper | doi.org/10.13182/NSE70-A20194
Articles are hosted by Taylor and Francis Online.
The relation is proposed as an approximate solution to the asymptotic slowing down equations in an infinite, homogenous, and weakly absorbing mixture of elements, in the energy range of fast-reactor neutrons. q(E) is the slowing down density; a is the absorption ratio Σa/Σt/; sλ(E) and Qλ are, respectively, the scattering ratio Σs,λ/Σt and the excitation energy of the λ'th level; ξ is equal to the average logarithmic energy loss per elastic scattering with the element containing the λ'th level; the sum extends over all elastic (Qλ = 0) and inelastic (Qλ > 0) levels. The above relation is constructed to reduce to the approximate solutions both in the limit of purely elastic scattering and in the limit of inelastic scattering by infinitely heavy scatterers. The relation is shown to be an approximate solution also in intermediate cases, where both target recoil and level excitation are important, provided that the mixture contains a substantial amount of medium-mass or light scatterers. Higher order terms may be included in the relation to better account for the effects of absorption.