ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
W. E. Kinney, F. G. Perey
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 396-406
Technical Paper | doi.org/10.13182/NSE70-A20191
Articles are hosted by Taylor and Francis Online.
Measurements of neutron elastic and inelastic scattering from 56Fe have been analyzed theoretically. The shape-elastic-scattering cross sections, calculated with an optical-model potential using energy-independent parameters, added to the compound-elastic contribution obtained from a Hauser-Feshbach calculation, including width fluctuation corrections, agree reasonably well with the data from 4 to 7.6 MeV. Inelastic-scattering cross sections from the Hauser-Feshbach calculation agree well with the data from 1 to 7.6 MeV. From the known branching ratios for the decay of the levels of 56Fe, calculated gamma-ray-production cross sections are in reasonable agreement with the data. It is suggested that such calculations form the basis for consistent sets of (n,n′) and (n,n′γ) cross sections for shielding calculations.