ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
R. G. Alsmiller, Jr., T. A. Gabriel, M. P. Guthrie
Nuclear Science and Engineering | Volume 40 | Number 3 | June 1970 | Pages 365-374
Technical Paper | doi.org/10.13182/NSE70-A20187
Articles are hosted by Taylor and Francis Online.
Electron-photon cascade calculations and photoneutron-production calculations have been carried out for 150-MeV electrons on thick targets of Be and Ta. In the energy region of the giant resonance an evaporation model was used to calculate the production spectrum, and at higher energies (25 MeV) an intranuclear-cascade model was used. The calculated photoneutron-production spectra cover the energy range 0.01 to ∼100 MeV and are given for target thicknesses of 1 and 20 radiation lengths in both Ta and Be. A method is described and sufficient information is given so that estimates of the photoneutron-production spectra in targets of intermediate thicknesses may be obtained. Results on the photoproton-production spectra are also given. The spectra from the Ta and Be targets are compared and are found to have very different characteristics in that the number of low-energy (< 1 MeV) neutrons produced in the Ta target is much greater than that produced in the Be target and the number of high-energy ( a few MeV) neutrons produced in the Be target is larger than that produced in the Ta target.