ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
G. Klotzkin, R. F. Valentine, C. A. Flanagan, J. C. Stachew
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 413-422
Technical Paper | doi.org/10.13182/NSE71-A20172
Articles are hosted by Taylor and Francis Online.
A series of experiments performed at the High Temperature Test Facility of the Bettis Atomic Power Laboratory indicated that placing lead in the water-reflector region of a water-moderated thermal reactor causes the reactivity of the core to increase. Two-dimensional diffusion theory calculations of the above-mentioned experiments also predicted this, but undercalculated the Δk/k effect of 6 in. of lead by 25%. In addition, two-dimensional diffusion theory and Monte Carlo calculations were used to analyze the reactivity effect of a lead shipping container surrounding a Seed 2 cluster from Shippingport Core 2. All the calculations revealed that the presence of lead in the reflector region of a water-moderated core causes the reactivity of the core to be significantly higher than a core with a pure-water reflector.