ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
T. K. Basu, V. R. Nargundkar, P. Cloth, D. Filges, S. Taczanowski
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 309-313
Technical Note | doi.org/10.13182/NSE79-A20153
Articles are hosted by Taylor and Francis Online.
Beryllium is used as an efficient neutron multiplier in several fusion reactor blanket designs. In the framework of the experimental research program on the neutronics of fusion reactor blanket designs established at the Institut für Reaktorentwicklung der Kernforschungsanlage Jülich GmbH, measurements of the neutron multiplication in beryllium produced by 14-MeV neutrons were carried out to check basic nuclear data. The measurements were made in rectangular geometry as a function of beryllium thicknesses of up to 20 cm. The experimental values of the neutron multiplication were found to be 25% lower than the calculated values for all thicknesses. The low value of the multiplication casts doubts as to the suitability of beryllium as a neutron multiplier in fusion reactor blankets to yield useful tritium breeding ratios.