ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
A. Smith, R. Holt, J. Whalen
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 281-293
Technical Paper | doi.org/10.13182/NSE79-A20149
Articles are hosted by Taylor and Francis Online.
Neutron total cross sections of natural carbon are deduced from the observed transmission of approximately monoenergetic neutrons through carbon samples of various thicknesses. The measurements extend from ∼0.1 to 4.5 MeV, with resolutions of ∼2 to 100 keV. Neutron differential elastic scattering cross sections of natural carbon are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of ≲100 keV, over an angular range of ∼20 to 160 deg and with energy resolutions of 20 to 50 keV. The experimental results are interpreted in terms of a multilevel R-function analysis. Results are compared with measured and evaluated neutron total and scattering cross sections and with scattered neutron polarization data reported in the literature. The present work suggests that the observed neutron total and scattering cross sections of carbon are physically consistent and suitable for use as a reference standard in experimental studies of neutron processes. The R-function interpretation provides a convenient description of neutron total and scattering cross sections of carbon as a function of both angle and energy.