ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
P. K. Sarkar, M. A. Prasad
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 243-261
Technical Paper | doi.org/10.13182/NSE79-A20146
Articles are hosted by Taylor and Francis Online.
Integral equations are derived to provide the expected statistical error in any biased Monte Carlo transport calculation. The equations result from a generalization of a recent formulation by Amster and Djomehri. The present treatment is general enough to handle situations where more than one particle emerge from a collision with distribution in the statistical weights. These formulations have been used to obtain the variance and the number of collisions per history in a few Monte Carlo schemes using exponential transform. The schemes considered include procedures such as splitting, weighting in lieu of absorption, and next-event estimation. Optimization of different procedures as well as their comparative merits are discussed for a sample one-group problem.