ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Samim Anghaie, Gary Chen
Nuclear Science and Engineering | Volume 130 | Number 3 | November 1998 | Pages 361-373
Technical Paper | doi.org/10.13182/NSE98-A2012
Articles are hosted by Taylor and Francis Online.
A computational approach to the solution of Navier-Stokes equations for the thermal and flow fields of very high temperature gas-cooled and gaseous core reactors is presented. An implicit-explicit, finite volume, MacCormack method, in conjunction with the Gauss-Seidel line iteration procedure, is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. An enthalpy rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The subsonic and supersonic flows of helium in a very high temperature gas-cooled reactor and uranium tetrafluoride (UF4) in a gaseous core reactor under variable boundary conditions (such as adiabatic, isothermal, and constant heat flux) are calculated. The numerical results are compared with other published results and experimental-based correlations. The good agreement with empirical correlations indicates the usefulness of the presented model for the prediction of the flow and temperature distribution under the convective and radiative heat transfer environment of very high temperature gas-cooled and gaseous core reactors.