ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
E. Greenspan
Nuclear Science and Engineering | Volume 74 | Number 3 | June 1980 | Pages 185-192
Technical Paper | doi.org/10.13182/NSE80-A20118
Articles are hosted by Taylor and Francis Online.
Perturbation theory for the coupled set of nonlinear equations of hydrodynamics describing inertially confined pellet fusion systems is developed based on a physical model similar to that embodied in the laser fusion code MEDUSA. Toward this end, a set of hydrodynamic adjoint equations and importance functions are defined. The perturbation theory presented can be an efficient tool for estimating the effects of many different alterations in the data field and design variables on a system performance parameter. Applications of this perturbation theory to sensitivity and uncertainty analysis of pellet fusion systems are discussed.