ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
J. A. Bucholz
Nuclear Science and Engineering | Volume 74 | Number 3 | June 1980 | Pages 163-167
Technical Paper | doi.org/10.13182/NSE80-A20115
Articles are hosted by Taylor and Francis Online.
Many detailed multigroup transport calculations require group-to-group Legendre transfer coefficients to represent scattering processes in various nuclides. These (fine group) constants must first be generated from the basic data. This paper outlines an alternative technique for generating such data, given the total scattering cross section of a particular nuclide on a point-wise energy basis, σ(E'), and some information regarding the angular scattering distribution for each initial energy point. The evaluation of generalized multigroup transfer matrices for transport calculations requires a double integration extending over the primary and secondary energy groups where, for a given initial energy, the integration over the secondary energy group may be replaced by an integral over the possible scattering angles. In the present work, analytic expressions for these angular integrals are derived that are free of truncation error. Differences between the present method (as implemented in ROLAIDS) and other methods (as implemented in MINX and XLACS-2) will be explored. Of particular interest is the fact that, for hydrogen, the angular integration is shown to simplify to the point that, for many weight functions, the integration over the primary energy group might also be performed analytically. This completely analytic treatment for hydrogen has recently been implemented in NEWXLACS.