ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
R. C. Lloyd, S. R. Bierman, E. D. Clayton, B. M. Durst
Nuclear Science and Engineering | Volume 78 | Number 2 | June 1981 | Pages 121-125
Technical Paper | doi.org/10.13182/NSE81-A20098
Articles are hosted by Taylor and Francis Online.
A series of experiments was performed to determine the effect of gadolinium as a soluble neutron absorber on the criticality of fuel rod assemblies in uranyl nitrate solution. The gadolinium in the form of Gd(NO3)s was mixed with uranyl nitrate solution. The lattice assemblies were composed of 4.3 wt% 235U-enriched UO2 pellets contained in stainless steel tubes immersed in the uranyl nitrate solution of the same 235U enrichment. Lattice assemblies with center-to-center fuel rod separations of 22.9, 27.9, and 33.0 mm were utilized in this study. In each case, a preset number of fuel rods was positioned in the assembly vessel and uranyl nitrate subsequently added, with the measurement then being of the depth of solution required for criticality. The uranyl nitrate was limited to the fuel-rod-bearing region of the lattice assemblies that were, in turn, reflected with water. Data on integral critical experiments are provided against which calculational techniques can be checked.