ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ivan Michieli
Nuclear Science and Engineering | Volume 117 | Number 2 | June 1994 | Pages 110-120
Technical Paper | doi.org/10.13182/NSE94-A20077
Articles are hosted by Taylor and Francis Online.
Buildup factors for various shielding materials exhibit large variations in magnitude and in curve shapes as a function of penetration depth as a result of the stochastic nature of the scattering processes for different incident photon energies. In a quest for adequate functional representation of point isotropic gamma-ray buildup factor data, a family of functions based on an expanded polynomial orthogonal set is introduced.The approximation function has the form .In the foregoing formula, a and β are generally constants that differ for each material, and in that respect, this formula presents a family of functions, while Ai are independent parameters of the function. This is not always valid, and for some materials, modifications are introduced where besides Ai, an additional independent parameter is (β while a remains constant throughout the whole energy domain.A polynomial-based function approach is validated as a possible choice [besides the well-known geometrical-progression (G-P) function] for point-kernel calculations. Results of approximations to exposure point isotropic buildup factors for water, concrete, and iron with four and for lead and beryllium with five independent parameters of presented function are in good agreement with the basic data within 4%, over the standard data domain. The results are compared with five-parameter G-P function fitting on the maximum-percentage-relative-error basis. The validity of using the independent parameters of the function to interpolate buildup factors for intermediate source energies is ascertained.