ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Yu. S. Lyutostansky, V. I. Lyashuk
Nuclear Science and Engineering | Volume 117 | Number 2 | June 1994 | Pages 77-87
Technical Paper | doi.org/10.13182/NSE94-A20074
Articles are hosted by Taylor and Francis Online.
The possibility of constructing an intense hard-spectrum neutrino source based on the β‾ decay of 8Li (T1/2 = 0.8 s) is studied. Applications of such a source are considered in neutrino investigations. The source can be developed on the basis of a neutron-to-antineutrino lithium converter through (n, γ) activation of 7Li isotopes irradiated by neutrons from the active zone of a reactor. The physical parameters of the lithium converter are compared with those of other neutrino sources. Different geometries for a converter using heavy water are considered. The converter efficiency is calculated as a function of the purity of the 7Li isotope and the expected tritium activity values. The cross section of the neutrino-deuteron reaction increases rapidly in both the neutral ( + d → n + p + ) and the charged ( + d→ n + n + e+) channels as the converter efficiency is improved. The real efficiency is 9%, and the cross sections are enhanced by factors of 2.5 and 5 in the respective channels.