ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
R. B. Vilim
Nuclear Science and Engineering | Volume 130 | Number 3 | November 1998 | Pages 292-308
Technical Paper | doi.org/10.13182/NSE98-A2007
Articles are hosted by Taylor and Francis Online.
A model-based method is developed to predict probabilistic margins to safety limits for passively safe reactors where the same physical mechanisms that control reactor behavior at power also control off-normal response. Model parameter values are estimated using the maximum likelihood method from the plant response to perturbations of flow, temperature, and rod reactivity applied during normal operation. The resulting model can be used to predict plant response to upsets and provide a probabilistic measure of how closely safety limits would be approached. The method is applied to the Integral Fast Reactor.