ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Taro Ueki, Edward W. Larsen
Nuclear Science and Engineering | Volume 130 | Number 3 | November 1998 | Pages 269-291
Technical Paper | doi.org/10.13182/NSE98-A2006
Articles are hosted by Taylor and Francis Online.
A new Boltzmann Monte Carlo (BMC) equation is proposed to describe the transport of Monte Carlo particles governed by a set of nonanalog rules for the transition of space, velocity, and weight. The BMC equation is a kinetic equation that includes weight as an extra independent variable. The solution of the BMC equation is the pointwise distribution of velocity and weight throughout the physical system. The BMC equation is derived for the simulation of a transmitted current, utilizing the exponential transform with angular biasing. The weight moments of the solution of the BMC equation are used to predict the score moments of the transmission current. (Also, it is shown that an adjoint BMC equation can be used for this purpose.) Integrating the solution of the forward BMC equation over space, velocity, and weight, the mean number of flights per history is obtained. This is used to determine theoretically the figure of merit for any choice of biasing parameters. Also, a maximum safe value of the exponential transform parameter is proposed, which ensures the finite variance of variance estimate (sample variance) for any penetration distance. Finally, numerical results that validate the new theory are provided.