ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. N. Nahavandi, R. F. Von Hollen
Nuclear Science and Engineering | Volume 18 | Number 3 | March 1964 | Pages 335-350
Technical Paper | doi.org/10.13182/NSE64-A20054
Articles are hosted by Taylor and Francis Online.
A set of one-group space-dependent neutron kinetics equations for reactor cores with spatially variable moderator density is developed. The solution to this set of differential equations is obtained numerically using an IBM-7094 digital computer. Employing the variational technique of von Neumann, a numerical stability criterion for space-dependent neutron kinetics equations is established. The present analysis is useful in the determination of the core open-loop response as well as the reactor system transient behavior. The open-loop response of a typical boiling-water reactor core for several values of step change in reactivity was determined using the present analysis. These are shown to be in agreement with the results of the classical space-independent neutron kinetics equations. The open-loop characteristic of the reactor core due to a step change in density distribution is also presented. The main distinguishing feature of the present study is the ability to determine the open-loop response due to disturbances (such as a series of successive step changes in density distribution) for which the classical space-independent approach provides no solution. Characteristics of this type are necessary in the dynamic analysis of boiling-water reactors where the system density distribution varies in time and space. A simple approximate method for the solution of the space-dependent neutron kinetics equations is also presented.