ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Li Mao, J. P. Both, J. C. Nimal
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 226-238
Technical Paper | doi.org/10.13182/NSE98-A2002
Articles are hosted by Taylor and Francis Online.
The coefficients of a truncated Legendre series are usually used in multigroup cross-section sets to treat the angular distribution for a group-to-group scattering event. Fine energy meshes and low-order Legendre expansions result in negative values in the corresponding multigroup Legendre expansions; therefore, special transfer matrix treatments for multigroup cross sections are needed.The difficulties of the truncated Legendre series representation in treating multigroup transfer are explained. In TRIMARAN-II, two existing standard methods, the equally probable step function (EPSF) representation and the discrete angle representation, which are based on preservation (at least approximately) of the first moments, are studied. The discrete angle representation has the advantage of accurately preserving the moments, but it may cause ray effects; the EPSF representation can eliminate ray effects, but it is not suitable for the treatment of the transfer matrix for material mixtures, because both forward- and backward-peaked scattering are present in this kind of cross section. A new method, the nonequally probable step function (NEPSF) representation, which combines the advantages of both the discrete angle and EPSF representations, is introduced. It can eliminate ray effects and accurately preserve the moments. The conjugate gradient method, powerful for solving multidimensional minimization problems, is used to obtain both the EPSF and NEPSF representations. A problem of neutron transmission in a hydrogenous material is used to compare the three representations. Comparisons of the TRIMARAN-II results with the three representations to those of the TRIPOLI-4 pointwise cross-section Monte Carlo code are given.