ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leak-tightness test on deck for SRS mega unit
The Savannah River Site in South Carolina will begin a leak-tightness test to qualify the megavolume Saltstone Disposal Unit (SDU) 10 to store up to 33 million gallons of solidified, decontaminated salt solution produced at the site.
M. Necati Özişik, Daniel Hughes
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 384-393
Technical Paper | doi.org/10.13182/NSE69-A20018
Articles are hosted by Taylor and Francis Online.
The steady-state flux of matter of molecular size from a mixture of vapor and noncondensable gas to the walls of a large containment vessel during the condensation of vapor can be predicted with the present analysis. A boundary layer approach has been used in formulating the mass-transfer problem and the resulting equations are solved numerically. Charts are presented for the flux of molecular iodine from a steam-air mixture to the walls of the containment vessel during the condensation of steam. Knowing the total pressure and the temperature of the bulk mixture, the wall temperature, and the concentration of air and iodine in the bulk mixture, the rate of removal of iodine from the vessel can be predicted. The analysis is correlated with an experiment and close agreement is found.