ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Genn Saji, Roy A. Axford
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 319-331
Technical Paper | doi.org/10.13182/NSE69-A20010
Articles are hosted by Taylor and Francis Online.
A new theoretical formalism of the space-time kinetics is developed for heterogeneous reactor models. The basic time-dependent diffusion equation, which contains terms representing localized absorption and fast-neutron production by fuel rods, has been analytically transformed into a convolution integral form. This enables computation of space- and time-dependent flux for heterogeneous reactors by considering the sizes and spacings of the fuel rods, their geometrical locations, and the nuclear properties of the material used. Although the basic idea and mathematical formalism developed in this paper can be applied for various other space-time kinetics problems, the final calculation is performed for the forced oscillation problem. Two computer codes, HERMITS-1 and HERMITS-2, are developed. By using these codes, it is shown that contour maps of the static flux, phase angles, and amplitudes of neutron waves around the fuel rods can be calculated in an extremely short amount of machine time.