ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on the Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
I. Toumi, D. Caruge
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 213-225
Technical Paper | doi.org/10.13182/NSE98-A2001
Articles are hosted by Taylor and Francis Online.
A new numerical method for three-dimensional two-phase flow computations is presented. The method has been implemented within the FLICA-4 computer code, which is devoted to three-dimensional thermal-hydraulic analysis of nuclear reactor cores. This numerical method is based on a finite volume technique, where convective fluxes at cell interfaces are calculated with an approximate Riemann solver. A strategy for constructing this linearized Riemann solver, which extends Roe's scheme, to solve two-phase flow equations is described. Extension to a second-order-accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a fully implicit integrating step is used. Some improvements performed to obtain a linearized implicit solution method that provides fast-running steady-state calculations are also presented. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems.