ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. L. Carter, N. J. McCormick
Nuclear Science and Engineering | Volume 39 | Number 3 | March 1970 | Pages 296-310
Technical Paper | doi.org/10.13182/NSE70-A19991
Articles are hosted by Taylor and Francis Online.
A scheme is devised which combines in a coupled manner the sampling from the transport equation and the adjoint transport equation to improve the sampling for a functional such as the space- and velocity-dependent neutron distribution due to a given source distribution. Specific use is made of sampling from the transport equation to construct a scheme for a near-optimal subsequent sampling from the adjoint equation, even when inelastic scattering is present. The energy-dependent reciprocity relation is utilized to relate the solution of the adjoint equation to that of the transport equation itself. This procedure may be expected to be advantageous when the phase-space volume contributing to the functional in the region of interest is smaller than that volume in the source region. Numerical results demonstrate that calculation times in two example problems can be significantly reduced with the coupled sampling approach.