ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. E. Lewis, G. Palmiotti
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 181-193
Technical Paper | doi.org/10.13182/NSE98-A1999
Articles are hosted by Taylor and Francis Online.
Red-black algorithms for solving response matrix equations in one- and two-dimensional diffusion theory are examined. The definition of the partial currents in terms of the scalar flux and net currents is altered to introduce an acceleration parameter that modifies the values of the response matrix elements while leaving the flux and net current solutions unchanged. The acceleration parameter is selected for response matrices derived analytically for slab geometry and from the variational nodal method for both slab and x-y geometries to minimize the spectral radius of the red-black iteration matrix for homogeneous media. The optimal value is shown to be independent of the mesh spacing in the fine mesh limit and to be a function only of c, the scattering-to-total cross section ratio. The method is then generalized to treat multiregion problems by formulating an approximate expression for the optimum acceleration parameter and demonstrated for a series of benchmark diffusion problems.