ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. T. Mihalczo, J. J. Lynn, J. R. Taylor
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 153-163
Technical Paper | doi.org/10.13182/NSE96-121
Articles are hosted by Taylor and Francis Online.
The reactivity worth of a central void region in the Oak Ridge National Laboratory (ORNL) unmoderated and unreflected uranium (93.20 wt% 235U) metal sphere was obtained by replacement measurements in a small (0.460-cm-diam) central spherical region in this 3.4420-in.-radius sphere. The measured central void region worth was 9.165 ± 0.023 ¢ using the delayed neutron parameters of Keepin, Wimett, and Zeigler to obtain the reactivity from the measured stable reactor periods. This value is slightly larger than measurements for GODIVA I with larger cylindrical samples of uranium (93.70 wt% 235U) in the center: 135.50 ± 0.12 ¢/mol for GODIVA I and 138.05 ± 0.34 ¢/mol for the ORNL sphere measurements. The difference could be due to sample size effect. The central worth was also calculated by neutron transport theory methods to be 6.02 ± 0.01 × 10-4 k. The measured and calculated values are related by the effective delayed neutron fraction. The value of the effective delayed neutron fraction obtained in this way from the ORNL sphere is 0.00657 ± 0.00002, which is in excellent agreement with that obtained from GODIVA I measurements, where the effective delayed neutron fraction was determined as the increment between delayed and prompt criticality and was 0.0066. From these ORNL measurements, using the delayed neutron parameters of ENDF-B/VI to obtain the reactivity from the stable reactor period measurements, the central void worth is 7.984 ± 0.021 ¢, and the inferred effective delayed neutron fraction is 0.00754. These values are 14.2% higher than those obtained from use of the Keepin, Wimett, and Zeigler delayed neutron data and produce a value of effective delayed neutron fraction in disagreement with GODIVA I measurements, thus questioning the usefulness of the six-group delayed neutron parameters (fast fission) of uranium from ENDF-B/VI for obtaining the reactivity from the measured reactor period using the Inhour equation.