ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
R. M. Bansal, S. P. Tewari, L. S. Kothari
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 367-374
Technical Paper | doi.org/10.13182/NSE79-A19954
Articles are hosted by Taylor and Francis Online.
Some results of a detailed study of neutron diffusion in water containing 1/v and non-1/v absorbers are reported. We have solved the Boltzmann transport equation in the diffusion approximation using the multigroup method and the recent neutron scattering kernel proposed by the authors. The calculated values of diffusion length, L(T), in pure water in the temperature range from 0.5 to 60°C are found to be in good agreement with most of the experimental results. (Results based on the Nelkin kernel are consistently higher.) The variation of L(T) is nonlinear up to 10°C, but in the temperature range from it can be expressed as L(T) = L (10°C) + 0.00446 (T − 10). The computed values of the diffusion length in water poisoned with various concentrations of boron are consistent with the experimental results of Martinho and Costa Paiva. For non-1/v absorbers—cadmium and gadolinium solutions—calculations on space-dependent neutron spectra are reported. The calculated values of for various concentrations of cadmium and gadolinium are in good agreement with the experimental data of Goddard and Johnson. For high concentrations of cadmium, notable differences are observed between the present calculations and those based on the Nelkin kernel.