ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shi-Ping Teng, Duaine G. Lindstrom
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 363-366
Technical Paper | doi.org/10.13182/NSE79-A19953
Articles are hosted by Taylor and Francis Online.
The criticality constants of fissile solutions containing borated Raschig rings are evaluated using the Monte Carlo code KENO IV with various geometry models. In addition to those used by other investigators, a new geometry model, the random geometry model, is presented to simulate the system of randomly oriented Raschig rings in solution. A technique to obtain the material thickness distribution functions of solution and rings for use in the random geometry model is also presented. Comparison between the experimental data and the calculated results using the Monte Carlo method with various geometry models indicates that the random geometry model is a reasonable alternative to models previously used in describing the system of Raschig-ring-filled solution. The random geometry model also provides a solution to the problem of describing an array containing Raschig-ring-filled tanks that is not available to techniques using other models.