ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
A. D. Caldeira, A. F. Dias, R. D. M. Garcia
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 60-69
Technical Paper | doi.org/10.13182/NSE98-A1989
Articles are hosted by Taylor and Francis Online.
The PN method is used to solve the multigroup slowing-down problem in plane geometry. A scalar (group-by-group) PN solution that is less limited by computational resources than previously reported vector solutions is developed. The solution is expressed, for a given group, as a combination of homogeneous and particular solutions that satisfies the first N + 1 moments of the corresponding transport equation. An interesting feature of the proposed approach is that the particular PN solution can be written in a form analogous to that of the homogeneous solution, except that a newly introduced class of generalized Chandrasekhar polynomials takes the place of the usual Chandrasekhar polynomials. Numerical results are given for two test problems and compared, for various orders of the approximation, with reference results available in the literature.