ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
H. Geng, S. M. Ghiaasiaan
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 294-304
Technical Paper | doi.org/10.13182/NSE98-A1983
Articles are hosted by Taylor and Francis Online.
A model for critical flow in capillaries and cracks of an initially subcooled liquid containing a dissolved noncondensable gas is presented. The model is based on the iterative numerical solution of, and the imposition of critical flow conditions on, one-dimensional two-phase flow conservation equations, everywhere assuming homogeneous equilibrium two-phase flow, and equilibrium between liquid and vapor-noncondensable mixture phases with respect to the concentration of the noncondensable.Model predictions are compared with data from two different sources with good agreement, indicating that the assumption of complete equilibrium between the two phases is adequate for estimating the critical flow in microchannels and cracks. The effect of dissolved noncondensables is examined, and it is shown that the desorption of dissolved noncondensables from water can lead to a slight (up to several percent) reduction in the critical flow rate.