ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Yoshihiko Kanemori, Yutaka Furuta
Nuclear Science and Engineering | Volume 36 | Number 2 | May 1969 | Pages 238-245
Technical Paper | doi.org/10.13182/NSE69-A19721
Articles are hosted by Taylor and Francis Online.
Dose rates of gamma rays from a 60Co cylindrical source surrounded coaxially by a cylindrical shield were measured in the radial direction in a plane passing through the midpoint of the axis of the source. The 60Co was uniformly distributed in a water-like medium. The shield was composed of water and iron, each in a single layer, and of water and iron in a double layer. The concept of the dose buildup factor for a volume source was introduced and the behavior of gamma rays scattered from the shielded cylindrical source was considered. The variation of the dose buildup factor for the shielded cylindrical source as a function of the distance from the source is less than the variation for the unshielded source. The dose buildup factor for a cylindrical source, with and without shields, shows many features that differ from those generally observed, i.e., an infinite medium surrounding a point source and one obtained from the total gamma-ray dose rates calculated by integration of an attenuation kernel with dose buildup factors for a point isotropic source. The unique behavior of the dose buildup factor for the cylindrical source with a cylindrical shield is shown by supplemental experiments with a 60Co point source to be due to the cylindrical shape of the source and shields.