ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
J. K. Dickens, F. G. Perey
Nuclear Science and Engineering | Volume 40 | Number 2 | May 1970 | Pages 283-293
Technical Paper | doi.org/10.13182/NSE70-A19689
Articles are hosted by Taylor and Francis Online.
We have obtained gamma-ray spectra for the reactions 16O(n,n′γ)16O and 16O(n,αγ)13C for incident-mean-neutron energies En between 6.7 and 11.0 MeV. The gamma rays were detected using a 30 cm3 coaxial Ge(Li) detector placed at 55 and 90 deg with respect to the incident-neutron direction. Time-of-flight electronics was used with the gamma-ray detector to discriminate against unwanted pulses due to neutrons and background gamma radiation. Two samples of 75 and 31 gm of BeO in the form of right circular cylinders were used. The incident-neutron beam was produced by bombarding a deuterium-filled gas cell with a pulsed deuteron beam of appropriate energy; for En ≤ 8.5 MeV the deuteron beam was obtained from the ORNL 6-MV Van de Graaff, and for En ≥ 8.5 MeV it was obtained from the ORNL Tandem Van de Graaff. These data have been reduced to differential cross sections for production of gamma rays from 16O. The cross sections have been compared, where possible, with previously measured values with reasonable agreement. However, there are several important differences, and these are discussed. Summing the partial cross sections yields values for the total nonelastic cross section which are in good agreement with values for the nonelastic cross section obtained from the difference between the total cross section and the total elastic cross section.