ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
D. R. Harris, M. Natelson, J. A. Galey, E. Schmidt
Nuclear Science and Engineering | Volume 40 | Number 2 | May 1970 | Pages 173-198
Technical Paper | doi.org/10.13182/NSE70-A19681
Articles are hosted by Taylor and Francis Online.
Correlated neutron fluctuation experiments have been performed on a poorly coupled, multiple seed-blanket reactor and on a better coupled cylindrical lattice reactor. The fluctuating numbers of counts recorded in various gate times by separated detectors are analyzed in terms of a proposed measure of reactor coupling, the modified coefficient of correlation, MCC, as well as in terms of the conventional dispersion parameter Y. Effects of count losses, statistical bias, and statistical error are examined. Calculations of MCC and Y are carried out in the α-mode form of the product density formalism for a number of detailed reactor models, including several four-energy-group diffusion theory and P-3 transport models for reactor design. Two of these detailed models, incorporating reduced fast-neutron transport and removal cross sections, are in agreement with MCC measurements, while one design model is not.