ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Yuriy M. Verzilov, Yujiro Ikeda, Fujio Maekawa, Yukio Oyama, Donald L. Smith
Nuclear Science and Engineering | Volume 129 | Number 1 | May 1998 | Pages 81-87
Technical Note | doi.org/10.13182/NSE98-A1965
Articles are hosted by Taylor and Francis Online.
Samples of water isotopically enriched in 17O, 18O, and 2H along with natural water were bombarded by neutrons from the intense deuterium-tritium source provided by the Fusion Neutron Source facility. After irradiation, the accumulated concentrations of 3H and 14C activities were determined by the liquid scintillation method. Special attention was paid to 14C losses in the gas phase during irradiation and preparation of scintillation counting samples. Cross sections for the 17O(n,)14C, 18O(n,n')14C, 17O(n,t)15N, and 18O(n,t)16N reactions at 14.7 MeV have been measured for the first time. The following values have been obtained for these reactions: 18.0 ± 3.3, 35.4 ± 6.5, 0.82 ± 0.15, and 26.8 ± 4.9 mb, respectively, relative to the 93Nb(n,2n)92mNb standard reaction cross section of 460 mb. A study of the systematics of (n,t) reactions at 14.7 MeV on light nuclei (atomic number Z < 10) has been carried out. The experimental cross-section values are also compared with data in the comprehensive activation libraries.