ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
M. Z. Youssef, R. W. Conn
Nuclear Science and Engineering | Volume 74 | Number 2 | May 1980 | Pages 130-139
Technical Paper | doi.org/10.13182/NSE80-A19628
Articles are hosted by Taylor and Francis Online.
A separation technique that divides the transport equation into two parts is developed to analyze fusion-fission hybrid systems. The transport of fusion-produced neutrons (first generation neutrons) is separately calculated and a fission neutron source is generated. The behavior of the second and subsequent generations of neutrons is obtained using fewer energy groups and a low order treatment for scattering. As usual, integral parameters are the summation of the contributions from the two parts. A sensitivity theory consistent with the separation technique is used to evaluate the relative sensitivity coefficient of a reaction rate to perturbations in the system. Relations between different adjoint fluxes are derived in the context of the separation technique. The technique is applied to show that the use of a low-order scattering description when solving the second part of the problem leads to small errors in the value of the fissile fuel production rate in a hybrid. Variation of this production rate with time can approximately be accounted for using the beginning-of-life values of the forward flux of the first part (related to fusion neutrons), the adjoint flux of the system, and the time-dependent source of the second part (related to subsequent fission generations).