ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Pekka Jauho, Pekka Silvennoinen
Nuclear Science and Engineering | Volume 38 | Number 2 | November 1969 | Pages 125-130
Technical Paper | doi.org/10.13182/NSE69-A19516
Articles are hosted by Taylor and Francis Online.
The neutron transport equation is solved in plane geometry for a moderator with a periodic temperature distribution using the synthetic scattering kernel of Williams. A simple correspondence between the new model and the heavy-gas model is found for physical quantities dependent on the first two eigenvalues of the kernel. A recursion procedure for solving the energy moments of the flux is also presented. The flux is determined by a method using singular eigenfunctions. Some numerical results for the mean energy of the flux as a function of the lattice length are presented for A = 8 or for A = 10 employing the heavy-gas model. In order to consider the effect of the periodicity of the temperature distribution on the mean energy of the neutron spectrum obtained, the results are compared to the mean energy of the neutron spectrum in Kottwitz geometry. There is a considerable deviation for lattices with lengths of the order of the rethermalization length. In this respect, the lattices with lengths of the order of ten rethermalization lengths describe Kottwitz geometry fairly well.