ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
F. T. Avignone III, L. P. Hopkins, Z. D. Greenwood
Nuclear Science and Engineering | Volume 72 | Number 2 | November 1979 | Pages 216-221
Technical Paper | doi.org/10.13182/NSE79-A19465
Articles are hosted by Taylor and Francis Online.
The theoretical beta spectrum of the thermal fission fragments of 235U in secular equilibrium was calculated using recent fission yields, nuclear decay scheme data, and very recent semi-empirical mass formulas to predict beta Q values of nuclides with unknown energy level structure. Better agreement with experiment is achieved when these isotopes are assumed to contain all of the excited states of isotopes with known decay schemes with the same atomic number Z and with neutron numbers N differing by even integers. The beta branching ratios for the unknown isotopes were assumed to be the renormalized collection of branching ratios found in all known isotopes of the families described above. The results obtained with these narrower restrictions are in better general agreement with experiment than those that replace the excited states and branching ratios of the unknown nuclides with those obtained by taking broad averages over known isotopes. There still appears to be some disagreement between theory and experiment, particularly at the high-energy end of the spectrum.