ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
R. J. M. Konings, J. L. Kloosterman, J. A. Hendriks, H. Gruppelaar
Nuclear Science and Engineering | Volume 128 | Number 1 | January 1998 | Pages 70-75
Technical Paper | doi.org/10.13182/NSE98-A1946
Articles are hosted by Taylor and Francis Online.
Within the frame of the EFTTRA (Experimental Feasibility of Targets for TRAnsmutation) cooperation, rods of 99Tc metal are irradiated in the Petten High Flux Reactor for 193 effective full power days, during which ~6% of the 99Tc is transmuted to the stable 100Ru. The radial and axial ruthenium distributions in one of the rods are measured by electron probe microanalysis. In the radial direction, the ruthenium concentration strongly increases in the outer rim of the sample, while the axial distribution shows little variation. The average ruthenium concentration, as measured by isotope dilution mass spectrometry, is (6.4 ± 0.2)% at 5 mm from the bottom of the rod and (6.1 ± 0.2)% at 5 mm from the top. The ruthenium concentrations calculated by the KENO three-dimensional Monte Carlo code, 6.1% at 5 mm from the bottom of the rod and 5.7% at 5 mm from the top, are in reasonable agreement with the measured ones. However, the calculated radial distribution of the ruthenium concentration does not agree with the measurements. The radial profile calculated by the MCNP Monte Carlo code, which uses a pointwise cross-section library, agrees much better with the measurements.