ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
K. Wisshak, F. Käppeler
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 148-162
Technical Paper | doi.org/10.13182/NSE80-A19447
Articles are hosted by Taylor and Francis Online.
The neutron capture and subthreshold fission cross section of 241Am was measured in the energy range from 10 to 250 keV, using 197Au and 235U as the respective standards. Neutrons were produced via the 7Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by a Moxon-Rae detector and fission events by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50 to 66 mm were used to obtain optimum signal-to-background ratio. The capture cross section could be determined with a total statistical and systematic uncertainty of 4 to 10% while the respective values are 13 to 20% for the fission cross section. The results are compared with recent data of other authors, which in some cases are severely discrepant.