ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
K. Wisshak, F. Käppeler
Nuclear Science and Engineering | Volume 76 | Number 2 | November 1980 | Pages 148-162
Technical Paper | doi.org/10.13182/NSE80-A19447
Articles are hosted by Taylor and Francis Online.
The neutron capture and subthreshold fission cross section of 241Am was measured in the energy range from 10 to 250 keV, using 197Au and 235U as the respective standards. Neutrons were produced via the 7Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by a Moxon-Rae detector and fission events by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50 to 66 mm were used to obtain optimum signal-to-background ratio. The capture cross section could be determined with a total statistical and systematic uncertainty of 4 to 10% while the respective values are 13 to 20% for the fission cross section. The results are compared with recent data of other authors, which in some cases are severely discrepant.