ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Taek Kyum Kim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 346-357
Technical Paper | doi.org/10.13182/NSE97-A1940
Articles are hosted by Taylor and Francis Online.
A new optimization method is presented for determining the optimized pressurized water reactor (PWR) fuel-loading pattern in the maximization principle of the end-of-cycle (EOC) core reactivity. The new method utilizes the point reactivity model in deriving the objective function corresponding to the EOC core reactivity as a linear function of the fuel-loading binary variables. It also uses a mixed integer programming algorithm consisting of the branch and bound method and dual linear programming algorithm in order to maximize the EOC core reactivity. The utility of the new optimization method is discussed in terms of numerical examples for the fuel-loading-pattern optimization of the cycle 4 core of the Yonggwang unit 2 PWR plant.