ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. V. G. Menon, D. C. Sahni
Nuclear Science and Engineering | Volume 82 | Number 3 | December 1982 | Pages 359-364
Technical Note | doi.org/10.13182/NSE82-A19397
Articles are hosted by Taylor and Francis Online.
In this Note we treat the problem of resonance absorption in a heterogeneous lattice cell using Fourier transforms. It is shown that the slowing down equations for the fuel and moderator flux, resulting from a flat flux approximation and the rational approximation for the fuel escape probability, get decoupled in the Fourier transform space. This decoupling is achieved without using the normal assumption of narrow resonance approximation for the moderator collision integral, and hence can be viewed as a generalization of the equivalence theorem of resonance absorbtion theory. Using certain ideas from the theory of distributions, we obtain a Fredholm integral equation (FIE) in the transform space. This integral equation with the kernel having a pole at the origin is similar to that obtained in the Fourier transform method for the homogeneous medium problem developed in our recent work. It is shown that the tem-perature-dependent resonance integrals and Doppler coefficients can be evaluated by converting the FIE to a matrix equation using the composite trapezoidal rule. Numerical results are presented to demonstrate the accuracy of the method.