ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. Ernest Wilkins, Jr. Keshav N. Srivastava
Nuclear Science and Engineering | Volume 82 | Number 3 | December 1982 | Pages 316-324
Technical Paper | doi.org/10.13182/NSE82-A19392
Articles are hosted by Taylor and Francis Online.
We prove two mathematically rigorous theorems that assert, under certain carefully stated hypotheses, the validity of the Goertzel and Otsuka conclusions that, in a thermal nuclear reactor that has a minimum critical mass, the fuel must be distributed so that the product of the thermal neutron flux and the adjoint thermal neutron flux is a constant in the core and does not exceed that constant in the reflector. These theorems differ from that in the preceding paper in the sense that some of the hypotheses of the earlier theorem have been strengthened and some weakened. The hypotheses can be weakened still further if we restrict attention to a fixed core and are not interested in results concerning the reflector. We also study the second variation of the critical mass functional. Finally, we show that, under some explicitly stated conditions, the multigroup diffusion theory for a thermal reactor can be treated as a special case of our general theory.