ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Geun-Sun Auh
Nuclear Science and Engineering | Volume 118 | Number 3 | November 1994 | Pages 186-193
Technical Paper | doi.org/10.13182/NSE94-A19384
Articles are hosted by Taylor and Francis Online.
Among the three digital dynamic compensation methods that are developed for or applied to the rhodium self-powered neutron detector—the dominant pole Tustin method of the core operating limit supervisory system, the direct inversion method, and the Kalman filter method—the best method is selected. The direct inversion method is slightly improved from the previous version, and the Kalman filter method is proposed. The simulation results show that the direct inversion method is better than the dominant pole Tustin method, but the best compensation results can be obtained from the Kalman filter method. The direct inversion method gives better results than the dominant pole Tustin method because it does not contain the assumption of a single pole and zero. The Kalman filter method is the best among the three methods because it uses the information of previous time steps throughout its estimation process.