ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Takeshi Kase, Kenji Konashi
Nuclear Science and Engineering | Volume 118 | Number 3 | November 1994 | Pages 153-159
Technical Paper | doi.org/10.13182/NSE94-A19381
Articles are hosted by Taylor and Francis Online.
Two transmutation methods, the spallation neutron and the muon-catalyzed fusion methods, both which use an accelerator, are employed for the transmutation of long-lived nuclides in high-level radioactive wastes. The transmutation energies and the effective half-lives of 99Tc for both transmutation methods are calculated by the Monte Carlo simulation codes for particle transport, the NMTC/JAERI code and the MCNP code. Both methods could obtain short effective half-lives, which are 17 times smaller than those of a fission reactor. The transmutation energies are calculated to be 25 to 55 MeV for both methods. These calculated transmutation energies reveal that it is possible for the foregoing two methods for transmutation of 99Tc to meet the energy balance criterion.