ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
R. J. Estep, T. H. Prettyman, G. A. Sheppard
Nuclear Science and Engineering | Volume 118 | Number 3 | November 1994 | Pages 145-152
Technical Paper | doi.org/10.13182/NSE94-A19380
Articles are hosted by Taylor and Francis Online.
Current methods for the nondestructive assay of special nuclear materials (SNM) and trans-uranic (TRU) waste in 208- drums can give assay errors of 100% or more when the drum matrix and/or radionuclide distribution is nonuniform. This problem is addressed by the development of the tomographic-gamma-scanner (TGS) method for assaying heterogeneous drummed SNM/TRU waste. The TGS method improves on the well-established segmented-gamma-scanner (SGS) method by performing low-resolution tomographic emission and transmission scans on the drum, yielding coarse three-dimensional images of the matrix density and radionuclide distributions. The images are used to make accurate, point-to-point attenuation corrections. The TGS geometric counting efficiency is 60% that of a typical SGS device, allowing a TGS assay time of only 28 min/drum with a one-detector system. The TGS method may also be useful for nondestructive examination. Currently, TGS is the only practical method of imaging SNM in drums.