ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. J. Estep, T. H. Prettyman, G. A. Sheppard
Nuclear Science and Engineering | Volume 118 | Number 3 | November 1994 | Pages 145-152
Technical Paper | doi.org/10.13182/NSE94-A19380
Articles are hosted by Taylor and Francis Online.
Current methods for the nondestructive assay of special nuclear materials (SNM) and trans-uranic (TRU) waste in 208- drums can give assay errors of 100% or more when the drum matrix and/or radionuclide distribution is nonuniform. This problem is addressed by the development of the tomographic-gamma-scanner (TGS) method for assaying heterogeneous drummed SNM/TRU waste. The TGS method improves on the well-established segmented-gamma-scanner (SGS) method by performing low-resolution tomographic emission and transmission scans on the drum, yielding coarse three-dimensional images of the matrix density and radionuclide distributions. The images are used to make accurate, point-to-point attenuation corrections. The TGS geometric counting efficiency is 60% that of a typical SGS device, allowing a TGS assay time of only 28 min/drum with a one-detector system. The TGS method may also be useful for nondestructive examination. Currently, TGS is the only practical method of imaging SNM in drums.