ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. W. Graham, III, D. S. Harmer, C. E. Cohn
Nuclear Science and Engineering | Volume 38 | Number 1 | October 1969 | Pages 33-41
Technical Paper | doi.org/10.13182/NSE69-A19350
Articles are hosted by Taylor and Francis Online.
The familiar rod-drop method for determining delayed-neutron parameters has been refined with new techniques of data collection, analysis, and correction. Values for a highly enriched uranium, heavy-water reactor have been obtained which have a general applicability because they have been accurately corrected for reactor power history, post-shutdown sub-critical neutron multiplication, and finite rod-drop time. Neutron flux after shutdown by rod drop in the Georgia Tech Research Reactor was monitored for periods in excess of three days using two detectors operated in parallel. One detector used a thermal-neutron-sensitive scintillator, the other a fission chamber. Flux-decay data were fit by weighted least squares using the Variable Metric Minimization method. This method was able to fit all the data simultaneously without limit on the number of fitting parameters. The most statistically-significant fit was obtained with 13 delayed-neutron groups, one of which was attributed to background due to its negligibly small decay constant. A fitting expression was used which accurately described the data collection process in which each data point was taken as the time integral of the flux over a finite time interval. The results are compared with values which have been obtained by small irradiated uranium samples and with decay-constant values in the last reported heavy-water in-reactor determination. There are indications that delayed-neutron effectiveness is enhanced by ∼3% in this type of reactor and that the effectiveness of photoneutron groups is decreased by ∼28% because of attenuation of high-energy gamma rays.