ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
W. W. Graham, III, D. S. Harmer, C. E. Cohn
Nuclear Science and Engineering | Volume 38 | Number 1 | October 1969 | Pages 33-41
Technical Paper | doi.org/10.13182/NSE69-A19350
Articles are hosted by Taylor and Francis Online.
The familiar rod-drop method for determining delayed-neutron parameters has been refined with new techniques of data collection, analysis, and correction. Values for a highly enriched uranium, heavy-water reactor have been obtained which have a general applicability because they have been accurately corrected for reactor power history, post-shutdown sub-critical neutron multiplication, and finite rod-drop time. Neutron flux after shutdown by rod drop in the Georgia Tech Research Reactor was monitored for periods in excess of three days using two detectors operated in parallel. One detector used a thermal-neutron-sensitive scintillator, the other a fission chamber. Flux-decay data were fit by weighted least squares using the Variable Metric Minimization method. This method was able to fit all the data simultaneously without limit on the number of fitting parameters. The most statistically-significant fit was obtained with 13 delayed-neutron groups, one of which was attributed to background due to its negligibly small decay constant. A fitting expression was used which accurately described the data collection process in which each data point was taken as the time integral of the flux over a finite time interval. The results are compared with values which have been obtained by small irradiated uranium samples and with decay-constant values in the last reported heavy-water in-reactor determination. There are indications that delayed-neutron effectiveness is enhanced by ∼3% in this type of reactor and that the effectiveness of photoneutron groups is decreased by ∼28% because of attenuation of high-energy gamma rays.