ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
O. E. Dwyer, H. C. Berry
Nuclear Science and Engineering | Volume 42 | Number 1 | October 1970 | Pages 81-88
Technical Paper | doi.org/10.13182/NSE70-A19330
Articles are hosted by Taylor and Francis Online.
The findings of a theoretical study of heat transfer for laminar, in-line flow through unbaffled rod bundles are reported. The results of a numerical solution are given for equilateral triangular bundles, for P/D ratios ranging from 1.001 to 2.00, for fully developed temperature profiles, and for the thermal boundary conditions of uniform wall heat flux in all directions. They are given in terms of rod-average heat transfer coefficients and circumferential variations of the wall temperature. The rod-average heat transfer coefficient goes through a rather sharp maximum as the P/D ratio is varied, the maximum occurring at P/D = 1.20. The circumferential variation of the wall temperature, large at small P/D ratios, decreases as P/D is increased, until at P/D > ∼ 1.50 it is negligible. Results calculated for the thermal boundary conditions of uniform wall heat flux in the axial direction and uniform wall temperature in the circumferential direction agreed excellently with previous results, attesting to the accuracy of the present calculational method.