ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hugh F. Henry
Nuclear Science and Engineering | Volume 72 | Number 1 | October 1979 | Pages 65-74
Technical Paper | doi.org/10.13182/NSE79-A19309
Articles are hosted by Taylor and Francis Online.
The radiative capture of unidirectional neutrons by the individual components of a stack of cadmium-covered gold foils was investigated for several spectra, principally those obtained by various modifications of the emission from a 252Cf source. The relative experimental activation of the foils was empirically described by a simple three-group relation reflecting capture in the 5-eV resonance, the 60-eV resonance, and an “average” of other capture regions. The incident fluxes in these respective regions could then be identified, and it was shown that the relative activations of the individual foils due to neutrons in these three energy regions depended on the incident spectrum. The energy dependence of the flux in the 5- to 60-eV range was also empirically shown to depend on the neutron spectrum.