ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
P. Azzoni, V. Benzi, A. Salomoni, P. L. Chiodi, C. Giuliani, R. Marvasi, S. Guardini, S. Tassan
Nuclear Science and Engineering | Volume 76 | Number 1 | October 1980 | Pages 70-77
Technical Note | doi.org/10.13182/NSE80-A19297
Articles are hosted by Taylor and Francis Online.
Experimental determinations of capture rates of structural materials used in fast breeder reactors, such as iron, chromium, nickel, and stainless steel, normalized to the 235U fission rate, were performed. The aim of these experiments was to check structural material multigroup cross-section libraries in the 1- to 100-keV range, where substantial discrepancies among various cross-section evaluations are not yet resolved. The experiments were carried out in an ARGONAUT-type RB-2 reactor, using the Null Reactivity Oscillation method, on test media composed of quasi-homogeneous loose particle mixtures. Comparisons were carried out with corresponding calculated values, showing a trend of these values to overestimate the measured quantities. Furthermore, evaluations of and of of 235U were made in the same intermediate spectrum. These results are not in disagreement with the indications of recent 235U cross-section measurements as far as the σc/σf of 235U is concerned.