ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
L. E. Strawbridge, R. F. Barry
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 58-73
Technical Paper | doi.org/10.13182/NSE65-A19259
Articles are hosted by Taylor and Francis Online.
A procedure for calculating the neutron multiplication factor and few-group constants for water-moderated reactors has been developed. The intent of this development was to produce a calculational procedure which could be used with confidence in the engineering design of water-moderated reactors. Analytic procedures that require large amounts of computer time were excluded from consideration. The proposed procedure includes a heterogeneous treatment of the fast-fission effect, resonance absorptions and the thermal utilization. The results of the procedure agree well with more rigorous calculations requiring orders of magnitude more computer time. The procedures have been applied to 116 U-metal and UO2 experimental lattices covering a wide range of parameters. The multiplication factor is calculated for all cases with a standard deviation about the mean of 0.86%.