ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Kazuo Shin, Yoshitomo Uwamino, Mitsuo Yoshida, Tomonori Hyodo, Takashi Nakamura
Nuclear Science and Engineering | Volume 71 | Number 3 | September 1979 | Pages 294-300
Technical Paper | doi.org/10.13182/NSE79-A19066
Articles are hosted by Taylor and Francis Online.
Spectra and attenuation profiles of neutrons and gamma rays transmitted through graphite piles were measured by an organic scintillator with an n-γ discrimination technique. The neutrons and gamma rays were produced in a graphite target placed in front of the piles, which were bombarded by 52-MeV protons. The piles were 54 cm high, 90 cm wide, and 11.7, 23.5, and 44.9 cm thick. The energy spectra of neutrons and gamma rays were obtained after unfolding by the FERDO code, from pulse-height distributions. Spectra calculated by use of a Monte Carlo neutron transport code developed for neutrons of energy up to 50 MeV show good agreement with the measured spectra.